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Abstract

A multicomponent reactive transport model with mixed equilibrium and kinetic reactions is used to analyze alteration front
geometry in discrete fracture-matrix systems. An analytical solution is used to verify the numerical model and to obtain an
expression for mineral reaction front geometry under quasi-stationary state conditions. Both the analytical solution and
numerical results suggest that the geometry of reaction fronts in a discrete fracture system can be characterized by the
sum of two dimensionless parameters:fD9=dv (f = porosity,D9 = effective diffusion coefficient in rock matrix,d = fracture
aperture half-width, andv = fluid velocity in the fracture) andlm=l

0
f (lm = equilibration length scale in rock matrix andl0

f =
equilibration length scale in the fracture in the absence of matrix diffusion). In the case where the system is surface reaction-
controlled, the first dimensionless parameter, which is independent of the reaction rate constants, dominates. From an analysis
of a system described by linear reaction rates, this parameter can be used to predict quasi-stationary state concentration
profiles and the distribution of minerals along the length of a fracture based on the one-dimensional diffusion-reaction profile
in the rock matrix bordering the fracture. Numerical simulations of a multi-component problem involving dedolomitization
resulting from the infiltration of hyperalkaline groundwater demonstrate that the dimensionless parameterfD9/dv applies in
more complicated multicomponent systems as well. This result suggests that field observations of matrix alteration
perpendicular to the fracture may be used to predict mineralization along the fracture itself.q 1998 Elsevier Science B.V.
All rights reserved.

Keywords:Fractures; Wall-rock alteration; Solution transport; Mass transfer; Hydrochemistry

1. Introduction

Fractures are extremely important in the transport
of contaminants in groundwater systems. This is par-
ticularly true where fractures are developed in other-
wise relatively impermeable rock of the kind
frequently chosen as host rocks for nuclear waste

repositories. In such cases, the permeability repre-
sented by the fractures is orders of magnitude larger
than the permeability of the rock matrix, whereas the
bulk rock fracture porosity is much smaller than the
matrix porosity. A growing body of work is devoted to
understanding the physics of transport in fracture sys-
tems (Neretnieks, 1980; Tang et al., 1981; Neretnieks
et al., 1982; Moreno et al., 1985; Moreno et al., 1988;
Moreno et al., 1990; Skagius and Neretnieks, 1986;
Tsang and Tsang, 1989; Cacas et al., 1991; Cvetkovic,
1991; Dykhuizen, 1992; Thoma et al., 1992; Moreno
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and Neretnieks, 1993; Maloszewski and Zuber, 1993;
Therrien and Sudicky, 1996; Nordqvist et al., 1996;
Vandergraaf et al., 1997; Park et al., 1997; Odling
and Roden, 1997), but a much smaller amount of
research has been devoted to examining the coupling
of multicomponent chemical reactions and transport
in such systems (Novak and Sevougian, 1992; Steefel
and Lichtner, 1994; Novak, 1996). Much of the
motivation for this work has come from the need to
understand the controls on radionuclide transport in
the vicinity of nuclear waste repositories.

While flow velocities in fractures are often
relatively high, diffusion into the rock matrix can
significantly reduce the effective solute velocities in
the fracture and retard the rate of contaminant
migration (Neretnieks, 1980). Even in the absence
of any kind of chemical reaction, the diffusive loss
of solutes into the rock matrix bordering fractures may
be significant, justifying the need to consider discrete
fracture models for transport in fractured media.
Matrix diffusion may be even more important in the
case where chemical reactions affect the mobility of
contaminants, since the rock matrix provides addi-
tional sorption and buffering capacity (Neretnieks,
1980; Tang et al., 1981; Steefel and Lichtner, 1994;
Novak, 1996).

An issue that arises in assessing the likely perfor-
mance of nuclear waste repositories is whether the
physical and chemical properties of the fractured
host rocks will remain constant for the life of the
repository (McKinley and Alexander, 1993; Steefel
and Lichtner, 1994; Smellie et al., 1997). Because
nuclear waste repositories need to function over
long periods of times (hundreds to tens of thousands
of years), reaction-induced modifications to the phy-
sical and chemical properties of the nearfield host rock
can become important. In certain cases, significant
modifications to the hydrologic and chemical charac-
ter of the near-field rocks may occur on the time scale
of hundreds of years or less. Using one-dimensional
reaction-diffusion calculations, Steefel and Lichtner
(1994), for example, suggested that the porosity of a
rock matrix with a marl composition such as would be
found in the near field surrounding the proposed Swiss
low-level waste repository could be substantially
modified within as little as tens of years. The greatest
uncertainty in this estimate appears to be the magni-
tude of the reacting surface area of minerals used in

the calculations. Steefel and Lichtner (1994) pointed
to several potential effects, including a porosity
increase or decrease in the rock matrix and in the
fracture. A porosity decrease in the rock matrix
could affect effective solute velocities in the fracture
by: (1) decreasing the effective diffusion coefficients
for solutes in the matrix, thus reducing the ‘diffusive
loss’ to the matrix, and (2) by reducing the amount of
reactive surface area on minerals available for both
sorption and for dissolution (and possibly precipita-
tion) reactions.

Several different methods have been used to simu-
late reactive transport in fracture systems. One possi-
bility is to treat the fracture network as an equivalent
porous medium (Steefel and Lasaga, 1994). However,
the large disparity between fracture and matrix prop-
erties would suggest that this approach is of limited
utility. Another possibility is to treat transport of reac-
tive fluids in fractured media by focusing on single
fractures or sets of fractures. Little has been done,
however, to investigate multicomponent reactive
transport in these systems. One exception is the
work of Novak (1996) and Novak and Sevougian
(1992) who considered a relatively complicated multi-
component problem involving adsorption and
precipitation/dissolution reactions taking place in
both the fracture and the rock matrix. These authors
carried out a local equilibrium analysis which showed
that precipitation/dissolution reactions in rock matrix
coupled via matrix diffusion to solute transport in the
adjacent fracture could significantly affect the retar-
dation of solutes in the fracture.

In this paper the one-dimensional reaction-
diffusion analysis of Steefel and Lichtner (1994) is
extended to include advection, dispersion, and reac-
tion in a single fracture coupled to matrix diffusion
and reaction. In their one-dimensional analysis,
Steefel and Lichtner (1994) treated the fracture
wall as a constant concentration boundary condition,
such as would be expected close to the fracture inlet
or in the case where fluid velocities in the fracture
are sufficiently high. In this study, we relax this
assumption and consider the evolution of solute
concentrations both along the fracture and in the
rock matrix (i.e., a two-dimensional domain). In
addition, we present an analytical solution for the
explicit fracture system which differs from that
presented by Tang et al. (1981) in allowing for
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different reaction rates in the fracture and matrix. The
analytical solution is also cast into a series of terms
which we believe give greater insight into the physical
and chemical controls on alteration front geometry in
two-dimensional discrete fracture systems. In a com-
panion paper (Steefel and Lichtner, 1998), we apply
these results to an analysis of water–rock reactions in
fractured marl at Maqarin, Jordan, a site which has
been proposed as a natural analogue to conditions
expected in the vicinity of cement-bearing nuclear
waste repositories.

2. Physical system

Consider a thin nondeformable fracture developed
within saturated porous rock matrix with a signifi-
cantly lower permeability compared to the fracture
such that flow within the rock matrix is negligible
(Fig. 1). Solute transport within the rock matrix, there-
fore, is via molecular diffusion only. The fractures are
assumed to have constant apertures and smooth
parallel walls initially. In addition we assume in all
cases that the width of the fracture is much smaller
than its length and that transverse diffusion and dis-
persion within the fracture cause complete mixing
across the fracture width. These two assumptions are

used to justify a one-dimensional treatment of mass
transport along the fracture (Tang et al., 1981). Unlike
the treatment by Tang et al. (1981), however, diffu-
sion is considered to be two-dimensional in the
numerical simulations described below. The rock
matrix is assumed to have initially homogeneous phy-
sical and chemical properties, although this is not a
requirement for the numerical model. A chemical
source of constant strength is assumed to exist at the
inlet to the fracture.

We present a formulation which allows for feed-
back between mineral reactions and the transport
properties of the rock matrix or fracture. In this
paper, however, the simulations are carried out with-
out this feedback in order to focus on the behavior of
the system within a time frame less than that in which
the physical properties of the matrix and fracture are
modified significantly. Given a constant hydraulic
head gradient across the length of the fracture, this
assumption results in a constant flow velocity in the
fracture and constant diffusivities in the rock matrix.
Although this assumption is not realistic for longer
times (even though it is almost always the standard
assumption in studies of water–rock interaction,
whether explicitly stated or not), it provides an end-
member behavior which is useful because it excludes
the nonlinear feedbacks associated with time-
dependent porosity and permeability change. In addi-
tion, it allows us to examine the quasi-stationary state
behavior of the system (Lichtner, 1988; Lichtner,
1991). In a companion paper (Steefel and Lichtner,
1998), simulations involving the reaction-induced
porosity and permeability change are included.

3. Governing equations

3.1. Formulation for a single fracture

A model which allows for both transport of fluid in
the fracture network, as well as diffusive transport in
the rock matrix, results in a discrete fracture model.
The transport equations for the discrete fracture
model include separate equations for the fracture
network and the rock matrix. These equations are
coupled and must be solved simultaneously. In
certain cases, it may be possible to assume that
lateral fluxes (parallel to the fractures) within the

Fig. 1. Schematic representation of a single discrete fracture
bordered by low permeability rock matrix.
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rock matrix can be neglected because they are small
compared to the fluxes perpendicular to the fracture
(Tang et al., 1981). In this case, it is possible to reduce
the problem to solving a set of coupled one-
dimensional problems: one corresponding to the frac-
ture network and the others to one-dimensional
diffusive transport perpendicular to the fracture.
Since we include lateral diffusive fluxes in the numer-
ical analyses presented in this work, however, we give
the governing equations with the lateral diffusive
fluxes included.

The differential equations describing the conserva-
tion of solute mass in a single fracture can be written
as

]Cf
j

]t
= −v

]Cf
j

]z
+D

]2Cf
j

]z2 − ∑
Ns

s=1
njsrs

+
fD9

d

]Cm
j

]x
lx=d, (j =1, …, Nc), �1�

and for the rock matrix as

]

]t
[fCm

j ] =
]

]x
fD9

]Cm
j

]x

� �
+

]

]z
fD9

]Cm
j

]z

� �
− ∑

Ns

s=1
njsrs

(2)

wherez is the coordinate along the fracture, L;x is
the coordinate perpendicular to fracture, L;t is the
time, T; v is the groundwater velocity in the fracture,
L/T; Cf

j is the total dissolved concentration of thejth
component in fracture, M/L3; Cm

j is the total dis-
solved concentration of thejth component in rock
matrix, M/L3; f is the rock matrix porosity, dimen-
sionless;Ns is the number of reacting minerals in the
system;Nc is the number of independent chemical
components in the system;n js is the stoichiometric
reaction coefficient;r s is the reaction rate of mineral
s,M/L 3T; t is the tortuosity, dimensionless;D9 is the
effective diffusion coefficient in the rock matrix
(D9 =tDw), M2/T; Dw is the diffusion coefficient in
water, M2/T; and 2d is the fracture aperture, L.

The dispersion coefficientD is defined according to
Bear (1979) as

D =aLv+Dw, (3)

wherea refers to the dispersivity along the fracture.
The porosity in the fracture is assumed equal to unity.
In Eq. (1), the last term on the right hand side repre-
sents the diffusive flux of componentj across the wall

of the fracture. Although diffusion in porous media is
often described in terms of a ‘diffusion porosity’
(Norton and Knapp, 1977) or formation factor,F,
(Dullien, 1979; Steefel and Lichtner, 1994), in this
work we define the diffusion in porous media accord-
ing to (Bear, 1979)

D9 =tDw: (4)

wheret is the tortuosity of the rock matrix. Note that
since the porosity multiplies the diffusion coefficient,
D9, in Eq. (2), the diffusive flux will → 0 as the
porosity → 0.

In this formulation, the total dissolved concentra-
tions,Cj, in both the fracture and matrix are defined by
assuming equilibrium among the individual aqueous
species in the system (Reed, 1982; Lichtner, 1985;
Kirkner and Reeves, 1988; Yeh and Tripathi, 1991)

Cj =cj + ∑
Nsec

i =1
nij ci , (5)

wherecj refers to the concentration of thejth primary
or basis species, andci refers to the concentration of
the ith secondary species, ofNsec in number.

3.2. Fracture permeability and flow

We assume that fracture permeability is described
by the ‘cubic law’ which states that rate of fluid flow
across a section of the fracture is proportional to the
applied pressure gradient and the cube of fracture
aperture (e.g., Snow, 1968; Phillips, 1991). The
permeability for a set of parallel fractures with smooth
walls is given by (Snow, 1968)

k =
ff b

2

12
=

nb3

12
, (6)

where n is the number of fractures per unit
distance across the rock (L−1), b is the fracture
aperture (b = 2d), and the fracture porosity,f f is
related to the fracture density and aperture by the
expression

ff =nb: (7)

We distinguish here between thelocal porosity of the
fracture which is assumed to be unity and the bulk
rock (continuum) fracture porosityf f which in gen-
eral is not equal to one. The situation is more com-
plicated in a real system where fracture walls are
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either nonsmooth or nonparallel (Ge, 1997) or even in
an idealized system, as considered here, where local
changes in the fracture aperture due to mineral dis-
solution and precipitation reactions are included.
Although clearly an approximation, we assume that
the cubic law holds locally. For practical purposes,
the cubic law is assumed to hold over the length of a
numerical grid cell along the fracture.

The Darcian flux in a unit volume of porous
medium is given by

u= −
rgk

m

]h
]z

(8)

wherem is the fluid viscosity,r is the fluid density,g
is the gravitational constant, and]h/]z is the gradient
in hydraulic head in the fracture plane (de Marsily,
1986). Since the mean flow velocityv is related to the
Darcian flux by

v=
u
ff

=
u
nb

, (9)

the mean flow velocity can be written as

v= −
rgb2

12m
]h
]z

(10)

The formulation in terms of a single fracture can be
extended to an equivalent porous media in the case
where the fractures form a parallel set by multiplying
both sides of Eq. (1) by the fracture porosity,f f = nb.

3.3. Initial and boundary conditions

The initial composition of the fluid in the fracture
and rock matrix and the mineral composition of the
rock matrix must be specified at timet = 0. In addition,
the composition of the fluid at the inlet to the fracture
must be specified. Explicitly, these conditions are
represented by the equations:

Cf
j (0, t) =Cf

j (0), (11)

Cf
j (z, 0) =Cf

j (`), (12)

Cm
j (x, 0; z) =Cm

j (`): (13)

At the boundary between the rock matrix and the
fracture, the solute concentrations are related by the
continuity condition:

Cm
j (0, t; z) =Cf

j (z, t): (14)

Also needed is a boundary condition at some distance
in thex direction into the rock matrix. Assuming that
the rock consists of a set of equally spaced, parallel
fractures, symmetry requires that a zero flux con-
dition exist midway between fractures

]Cm
j

]x
lx=d=2 =0, (15)

whered is the fracture spacing (= 1/n).

3.4. Kinetic formulation

We use a kinetic rate law based on the assumption
that attachment and detachment of ions from mineral
surfaces is the rate-limiting step (i.e., a surface reac-
tion-controlled rate law). It does not mean, however,
that one cannot obtain overall transport control on the
mineral dissolution or precipitation rate since this
depends on the magnitude of the reaction rate relative
to the macroscopic transport rates. The rate laws used
for mineral precipitation and dissolution are based
loosely on transition state theory (e.g., Lasaga,
1981; Lasaga, 1984; Aagaard and Helgeson, 1982).
This formulation gives the dependence of the rate
on the saturation state of the solution with respect to
a particular mineral as a function of the ion activity
product,Qs, defined by

Qs = P
Nc

j =1
a

njs

j , (16)

where theaj are the activities of the primary species
used in writing the dissolution reaction for the
mineral. In order to incorporate the strong pH depen-
dence of most mineral dissolution and precipitation
reactions far from equilibrium, parallel rate laws are
used which are summed to give the overall reaction
rate law for a particular mineral

rs = −As

�
∑
Nrs

l =1
kl P

Nc +Nx

i =1
aps

il
i

� ��
1−

Qs

Ks

� �� �
, (17)

where kl is the far from equilibrium dissolution
rate constant for the lth parallel reaction, p s

il

gives the dependence of the lth parallel reaction
on a particular species far from equilibrium, Ks

is the equilibrium constant, N rs is the number of
parallel reactions, and As refers to the surface area
of individual minerals in the rock matrix or fracture.
A nonlinear dependence on the solution saturation
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state (e.g., Steefel and Van Cappellen, 1990; Steefel
and Lasaga, 1994) can be included, but is not done so
here. The termP

Nc +Nx
i =1 ap

i incorporates the effects of
various ions in solution on the far from equilibrium
dissolution rate. This is most commonly the solution
pH or hydroxyl ion activity but may include other
electrolytes as well (e.g., Na+ and Cl−; Dove,
1995). As an example, consider the overall rate law
for kaolinite (Nagy, 1995) which includes H+- and
OH--dependent dissolution rates

rkaol = −AkaolfkH�a0:17
H� +kOH− a0:54

OH− g
�
1−

Qkaol

Kkaol

�
:

(18)

Note also that Eq. (17) is fully compatible with the
thermodynamics of the system, since if the rate con-
stant is chosen large enough relative to the transport
rates in the system, local equilibrium (or transport-
controlled) behavior is obtained.

Depending on how mineral surface area is com-
puted, it may be necessary to include a dependence
of the surface area on the matrix and fracture porosity
such thatAs → 0 as the porosityf → 0. Mineral sur-
face area formulations based on grain size like that
presented by Lasaga (1984) cannot be used to describe
the mineral surface area in contact with fluid as the
porosity goes to zero (a porous medium made up of
closest packed spheres cannot have a zero porosity).
Here we use the expression

As(t) =Ao
s

f(t)
fo

� �
, (19)

whereAo
s andfo refer to the initial surface area and

initial porosity, respectively.

3.5. Mineral alteration equations

The mineral alteration equations for both fractures
and the rock matrix have the form

]fs

]t
= V̄srs (20)

where V̄s refers to the mineral molar volume. The
porosity can be calculated directly from Eq. (19)
(assuming no other processes result in a change in
porosity) since

f =1− ∑
Ns

s=1
fs: (21)

The rate of change of the fracture aperture can be
related to the rate of change of the mineral volume
fractions in the fracture,ff

s, by applying Eq. (19) to
the fracture to yield

]d

]t
= −d ∑

Ns

s=1

]ff
s

]t
= −d ∑

Ns

s=1
V̄srs , (22)

whereff
s, refers to the mineral volume fractions in

the fracture. In finite difference form, this equation
becomes

d(z, t +Dt) =d(z, t)
�

1−Dt ∑
s

V̄srs

�
: (23)

This equation is used when updating the fracture
aperture as a function of time and space.

4. Numerical solution method

The governing partial differential equations are
discretized using integrated finite differences (de
Marsily, 1986). In many cases it is possible to take
advantage of the special structure of the discrete
fracture problem and to cast the system as a series
of one-dimensional reaction-diffusion equations
perpendicular to the fracture coupled to a one-
dimensional advection-dispersion-reaction equation
following the fracture. This is the approach taken in
formulating the discrete fracture model for the
analytical solutions given below and in Tang et al.
(1981). However, in this work we include lateral
fluxes (parallel to the fracture) within the rock matrix,
making the problem fully two-dimensional. To solve
the system, we use a slightly modified version of the
code GIMRT (Steefel and Yabusaki, 1996) which
uses a global implicit or one-step method to couple
transport and reaction (Steefel and Lasaga, 1994;
Steefel and MacQuarrie, 1996).

The advantages and disadvantages of the global
implicit scheme as compared to other possible
approaches to coupling multicomponent reaction
and transport are discussed by Steefel and MacQuarrie
(1996). As pointed out by Yeh and Tripathi (1989),
the principal disadvantage of the global implicit or
one-step approach is its use of large amounts of com-
puter memory. The discrete fracture calculations,
described in detail in Steefel and Lichtner (1998),
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for example, required 35 to 45 MB of physical
memory. In addition, the CPU time required to com-
plete a single time step is generally larger than the
time required for a decoupled approach like the
‘one-step’ or sequential non-iterative approach
(SNIA). The principal advantage of the global implicit
approach, however, is its ability to take significantly
larger time steps than is possible with the other
methods. Because transport is fully implicit, there is
no Courant number limitation on the timestep for
stability requirements as would be the case where
transport was handled explicitly. In addition, the full
coupling of reaction and transport terms eliminates
operator splitting errors occurring in completely
decoupled approaches like the SNIA or two-step
approach.

Advective transport in the fracture is handled using
a standard first-order accurate upwind formulation.
This approach can also add considerable numerical
dispersion to the transient solution, making this par-
ticular implementation unsuitable for problems where
tracking of a transient concentration front is essential
at high Peclet number (for this purpose the code OS3D
[Steefel and Yabusaki, 1996] with its 3rd order accu-
rate TVD scheme can be used). In this study, however,
the principal focus is on quasi-stationary state effects
like porosity and permeability change rather than the
accurate tracking of transient concentration fronts, so
numerical dispersion is not a significant issue. More-
over, even the global implicit upwind scheme employed
here performs relatively well because concentration
fronts in the fracture are not extremely sharp due to the
diffusive loss of solutes to the rock matrix. This can be
seen by comparing the results to the analytical solu-
tion for the discrete fracture system as we do below.

5. Verification of algorithm against an analytical
solution

The analytical solutions for transport in a single
fracture and adjacent rock matrix presented by Tang
et al. (1981) can be used as a partial verification of the
numerical approach outlined here. Tang et al. (1981)
give a solution which includes radioactive decay and
adsorption described by a linear equilibrium isotherm.
Tang et al. (1981) also give solutions for the case in
which dispersion in the fracture is included and for the

case where it is neglected (since the neglect of
dispersion in the fracture admits a simpler analytical
solution which need not be integrated numerically).
Here we modify the Tang et al. (1981) solution so that
radioactive decay is replaced with a mathematically
similar linear rate law for precipitation and dissolution
of a mineral phase (e.g., quartz or amorphous silica) in
a single component system. In addition, we allow for
the possibility of the effective rate constant (including
both the intrinsic rate constant and the mineral surface
area contribution) differing between the fracture and
the rock matrix. Assuming pure diffusion, linear reac-
tion kinetics, and constant porosity in the rock matrix
(and an assumption of unit porosity in the fracture),
the transport equations for the matrix and fracture are
given by

]Cm9

]t
=D9

]2Cm9

]x2 −
km

f
Cm9 (24)

and

]Cf 9

]t
= −v

]Cf 9

]z
−kf Cf 9 +

fD9

d

]Cm9

]x
lx=d: (25)

In these equationsCm9 andCf 9 are defined by and

Cm9 =Cm −Ceq
m , (26)

and

Cf 9 =Cf −Ceq
f : (27)

These equations are subject to the boundary
conditions

Cf 9(0; t) =C09, (28)

Cm9(`, z, t) =0, (29)

Cm9(0, z, t) =Cf 9(z, t) (30)

and the initial conditions

Cm9(x, z, 0) =0 (31)

Cf 9(z, 0) =0 (32)

wherekf refers to the rate constant in the fracture.
As noted above, the analytical solutions to these

equations take a simpler form when pure advective
transport is assumed in the fracture. The transient
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solution for Eq. (24) (the fracture) is given by

Cf 9 =0, (z. vt),

Cf 9 =
C09

2

�
exp −

z
lf

� �
erfc(y+ )

+exp −z
1

l0
f

−
1

Pelm
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erfc(y− )g, (z, vt),

�33�with

y6 =
z

2Pe

�����������������
D9(t −

z
v
)

r 7
1
lm

�����������������
D9(t −

z
v
)

r
, (34)

and wherelf andlm are the characteristic equilibration
lengths for the fracture and matrix, respectively,
defined by

lm =

���������
fD9

km

s
, (35)

and

lf =
1

1

l0
f

+
1

Pelm

: (36)

The quantityl0
f refers to the fracture equilibration

length in the absence of matrix diffusion given by

l0
f =

v
kf

$ lf , (37)

and the Peclet-like number, Pe, is defined in terms of

the approximate diffusion length scale provided by
the fracture aperture half-width

Pe=
vd

fD9
: (38)

The transient solution to Eq. (23) (the rock matrix) is
given by

Cm9 =0, (z. vt),

Cm9 =
C09

2

�
exp −

z
lf

+
x−d

lm
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erfc(h+ )

+exp −z
1

l0
f

−
1

Pelm

� �� �
exp

x−d

lm

� �
erfc(h− )

�
,

× (z, vt), �39�
whereh 6 is defined by

h6 =

z
Pe

+x−d

2

�����������������
D9(t −

z
v
)

r 7
1
lm

�����������������
D9(t −

z
v
)

r
(40)

The analytical solution can be compared to the results
given by the numerical model described above for the
case of reactive transport of a single component (e.g.,
SiO2(aq)). The parameters used in the comparison are
velocity v in the fracture of 1000 m/year, a matrix
porosityf of 2% in the rock matrix, a fracture aper-
ture half widthd of 10−4 m, a reaction rate constant in
the rock matrixkm of 10−6 s−1 and a rate constantkf of
0 in the fracture, and a diffusion coefficient in porous

Fig. 2. Comparison of analytical and numerical solutions for quartz dissolution in the fracture at 0.01 and 1.0 years. Discrepancy for early
times is due to numerical dispersion in upwind numerical method which disappears as the system approaches steady state at 1 year.
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media D9 of 10−6 cm2 s−1. A concentration profile
versus distance for SiO2(aq) is shown at 0.01 and
1.0 years for both the analytical solution (Eq. (29))
and for the numerical model (Fig. 2). The match
between the analytical and numerical solution at
0.01 years is close but not perfect due to the
numerical dispersion resulting from the upwind formula-
tion for advective transport. At 1.0 years, however, the
match is very good since the system has evolved close to
the stationary-state solution where the effects of
numerical dispersion in a one-dimensional system are
negligible.

6. Stationary state solution

The stationary-state solutions for the fracture and
the rock matrix (Eq. (30) Eq. (36)), respectively, can
be obtained by lettingt → ` (and remembering that
erfc(−`) = 2 and erfc(̀ ) = 0). The solutions to the
stationary state forms of Eq. (24) Eq. (23) can be
expressed as

Cf (z) =C0e−z=lf , (41)

and

Cm(x, z) =Cf (z)e−x=lm =C0e−z=lf e−x=lm: (42)

Taking the logarithm of both sides of Eq. (39), it is
apparent that equal contours of the concentration are
represented by

x
lm

+
z
lf

=constant: (43)

Since the reaction is assumed to be linear (r = kC),
Eq. (40) also gives an expression for constant
contours of the reaction rate. For a quasi-stationary
state system, the lines of constant concentration and
reaction rate also mark the position of mineral fronts.
This form of the analytical solution for the rock matrix,
therefore, can be used to obtain an expression for the
geometry of the mineral fronts in the rock matrix. The
slope of the quasi-stationary state mineral fronts is
equal to

dx
dz

= −
lm

lf
= −

kf

v
lm +

fD9

vd

� �
: (44)

Or we can rewrite this expression in terms of the
fracture equilibration length scale in the absence of

matrix diffusion to yield

dx
dz

= −
lm

l0
f

+
fD9

vd

� �
: (45)

Note that the second term in brackets is independent
of the kinetic rate constants and depends only on the
fracture aperture, matrix porosity and diffusion coef-
ficient, and the fracture fluid velocity. The first term
is equal to the ratio of equilibration lengths for the
matrix and the fracture in the absence of coupling to
the matrix. This term written out becomes

lm

l0
f

=
kf

v

���������
fD9

km

s
: (46)

If we break up the effective rate constantskm andkf

into an intrinsic rate constant (per unit surface area
mineral), which is assumed the same in the matrix
and the fracture, multiplied by a mineral surface area
term given byAm in the matrix and 1/d in the fracture,
the effective rate constants become

kf =
k
d
, (47)

and

km =Amk: (48)

Making use of these expressions along with Eq. (43),
Eq. (42) becomes

dx
dz

= − 1+

���������������
k

AmfD9

s !
1

Pe:
(49)

Note thatk has the units of m/s ifD9 is in units of m2/
s andAm is in units of m−1. With D9 = 10−9 m2/s,Am =
100 m−1, and a porosity of 10%, the quantity under
the square root is of order unity if

k,AmfD9 . 10−8ms−1: (50)

Note that with increasing flow velocity (Pe→ `) the
slope of mineral fronts in the rock matrix decrease to
zero (i.e., they become parallel to the fracture). For
fixed Pe, ask increases the slope becomes infinite, or
perpendicular to the fracture. Thus, it is interesting to
note that for relatively small values of the rate con-
stantk relative to the diffusion coefficient in the rock
matrix (i.e., for surface reaction-controlled con-
ditions), the slope of the mineral fronts in the rock
matrix become independent of the rate constant
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whereas for large rate constants approaching local
equilibrium the slope is dependent on the rate con-
stant. Although these results apply rigorously to a
one-component stationary state system in which the
reaction can be described with a linear rate law, the
relationships derived here may be useful for more
general multicomponent systems as we shall show
below.

7. Alteration front geometries in multicomponent
systems

The analytical solution for the stationary state dis-
crete fracture system given above (Eq. (39)) was used
to obtain an expression for the slope of the reaction

fronts (Eq. (46)). The analytical solution, however, is
strictly applicable to a system characterized by a sin-
gle chemical component and by linear kinetics. Here
we use the numerical code described above to see
whether the same expression can be used to calculate
alteration front geometry in a more complicated (non-
linear) case involving precipitation and dissolution.
As an example, we consider an idealized case in
which hyperalkaline groundwaters infiltrate a calcitic
dolomite along fractures. The situation is similar to
that considered by Steefel and Lichtner (1994), except
that we neglect silicate phases in order to keep the
analysis simple. As a boundary condition at the origin
of the fracture, we use a groundwater equilibrated
with portlandite, brucite, and calcite, giving a pH of
12.39 (Table 1). As an initial condition in the rock
matrix and fracture (to which the system is not par-
ticularly sensitive), we use a typical Na–HCO3

groundwater composition in equilibrium with the cal-
cite and dolomite in the rock (Table 2). In addition, we

Table 2

Solute concentrations used as an initial condition in the calcula-
tions

Component Concentration(mol/l)

Total Na 5.0× 10−2

Total Ca 9.7× 10−4

Total Mg 6.1× 10−5

Total CO2 2.0 × 10−3

Total Cl 5.0× 10−2

I(M) 5.3 × 10−2

Alkalinity 2.0 × 10−3

T (8C) 25
pH 8.00
log PCO2

− 3.0

Table 3
Reaction rate constants and surface areas used in the calculations

Mineral Log ks

(moles/m2/s)
Surface area
(m2/m3)

Reference

Calcite − 6.19 500 Chou et al. (1989)
Dolomite − 7.70 500 Busenberg and

Plummer (1982)
Brucite − 8.00 500

Table 4

Reactions and equilibrium constants used in the calculations

Reaction logKe q

OH− + H+ O H2O 14.00
HCO−

3 O CO−2
3 + H+ − 10.33

CO2 (aq)O CO−2
3 + 2H+ − 16.67

NaHCO3 (aq)O CO−2
3 + H+ + Na+ − 10.48

NaCO−
3 O CO−2

3 + Na+ − 0.51
NaOH (aq)+ H+

O Na+ + H2O 14.80
MgCO3 (aq)O CO−2

3 + Mg+2 − 2.98
MgHCO+

3 O CO−2
3 + Mg+2 + H+ − 11.37

MgOH+ + H+ O Mg+2 + H2O 11.79
MgCl + O Mg+2 + Cl− 0.13
CaHCO+

3 O CO−2
3 + Ca+2 + H+ − 11.38

CaOH+ + H+ O Ca+2 + H2O 12.85
CalciteO Ca+2 + CO−2

3 − 8.48
DolomiteO Ca+2 + Mg+2 + CO−2

3 − 18.14
Brucite + 2H+ O Mg+2 + 2H2O 16.30
Portlandite+ 2H+ O Ca+2 + 2H2O 22.56

Table 1

Solute concentrations for the cement pore water used as a boundary
condition in dual porosity calculation

Component Concentration(mol/l)

Total Na 5.0× 10−2

Total Ca 1.7× 10−2

Total Mg 2.5× 10−8

Total CO2 1.6 × 10−6

Total Cl 5.0× 10−3

I(M) 9.7 × 10−2

Alkalinity 3.49 × 10−2

T (8C) 25
pH 12.39
log PCO2

− 12.90
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assume that calcite, dolomite, and porosity make up
20, 50, and 30% of the rock, respectively. Mineral
rate constants and surface areas used in the calculation
are given in Table 3. Equilibrium constants for
mineral and aqueous complexation reactions are
given in Table 4. An effective diffusion coefficient
of 10−10 m2/s, a fracture aperture half-width of
0.946 mm, and a velocity in the fracture of 1000 m/
year are assumed. This gives a value of 1000 for the
quantity Pe defined bydv/fD9. A constant grid
spacing of 1 m along the fracture and 0.5 mm perpen-
dicular to the fracture are used to discretize the
domain. Mineral dissolution and precipitation reac-
tions are not allowed to affect the transport properties
of the rock in this calculation. In Fig. 3, contour plots
of the calcite precipitation rate, Ca+2, CO−2

3 , and
solution pH are shown at 50 years in the full discrete
fracture (2D) system. Note the characteristic

wedge-shaped geometry of the fronts which intersect
the fracture downstream of the fracture inlet.
Alteration envelopes are widest in the rock matrix
close to the fracture inlet and become narrower with
distance down the fracture. The distance at which a
particular alteration front or solute isoconcentration
line intersects the fracture is controlled by the para-
meterdv/fD9 ( = 1000). This can be seen even more
clearly by comparing pH profiles and calcite
precipitation rates in the fracture with the pH and
calcite rates from the rock matrix atz = 0 with dis-
tances scaled by 1000. (Fig. 4). The slight discrepancy
that does exist is due to the coarser grid and resulting
numerical dispersion in the fracture. Note that the
calcite precipitation rate shows a peak at about 20 m
down the fracture which corresponds to 2 cm in
the rock matrix. This same behavior was observed
in the more extensive calculations presented in

Fig. 3. Solution pH, calcite precipitation rate (mol/l/s× 109), CO−2
3 ion, and Ca+2 ion concentrations for 2D discrete fracture system. Note the

wedge-shaped geometry in which both reaction fronts and solute isoconcentration lines intersect the fracture downstream of the fracture inlet.
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Steefel and Lichtner (1994) and is attributed to
interdiffusion of Ca+2 and CO−2

3 ions resulting
from the changing stoichiometry of the dedolomiti-
zation reaction as a function of distance from the
fracture wall. Steefel and Lichtner (1994) showed
that the distinctive topology of the calcite precipita-
tion peak only occurs in a diffusion-dominated
system. The peak is completely absent in an advec-
tion-dominant system. The discrete fracture results
shown here indicate that even though advection is
the dominant mode of transport inthe fracture itself,
the coupling to diffusion and reaction in the rock
matrix results in a diffusion-controlled topology in
the fracture. The results also indicate that, at least in
theory, solute concentration, reaction rate, and
volume fraction profiles along the fracture can be
predicted from the one-dimensional reaction-
diffusion calculation in the rock matrix by using
the scaling factor Pe(dv/fD9).

8. Discussion

The calculations described above suggest that the

geochemical behavior of reactive species in fractured
rock may differ substantially from that expected in
homogeneous porous media. The principal conclusion
from the modeling is that concentration profiles for
major and minor species in fractures may be strongly
affected by matrix diffusion and reaction, no matter
what the length scale of the fracture itself. Using the
example of infiltration of a hyperalkaline plume into a
calcitic dolomite, we have shown that the concentra-
tion and mineral reaction rate profiles in the fracture
show the same topology as do the concentration and
mineral reaction rate profiles in the rock matrix where
transport is purely via diffusion. In contrast, reactive
transport in homogeneous porous media at these
length scales results in advection as the dominant pro-
cess, giving a substantially different profile (Steefel
and Lichtner, 1994). The conclusion, therefore, is that
the profiles in the fracture under quasi-stationary-state
conditions may be ‘diffusion- controlled’, whatever
the length of the fracture itself.

The aspect ratio of a reaction front in the rock
matrix under surface reaction-controlled conditions
is determined by the parameterfD9/dv. The analytical
theory for a single component system with linear
kinetics predicts in addition that the reaction fronts
in the rock matrix will be straight lines. Similar
behavior is seen in the geochemical system we have
investigated here, despite the fact that the rate laws are
nonlinear and the chemical system is multicompo-
nent. Based on these results, the discrete fracture
calculations suggest that it is possible to describe
the quasi-stationary state system with a single one-
dimensional reaction-diffusion calculation (even if
multicomponent) in the rock matrix and a knowledge
of the parameterfD9/dv. At the very least, this gives
what appears to be a reliable way of making estimates
of how a single fracture system will behave, since it
will be possible to extract such important features of
the system as the equilibration length scale and the
distance required for groundwater pH values to reach
near neutral values.

9. Conclusions

Using a combination of analytical solutions and
numerical modeling of multicomponent reactive
transport in a discrete fracture system, we have

Fig. 4. Comparison of solution pH and calcite precipitation rate in
the fracture with these respective quantities in the rock matrix,
scaled by the parameterdv/fD9 ( = 1000 in this example).
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shown that the topology of reaction rate and concen-
tration profiles in fractures may be diffusion-
controlled, despite the high rates of solute transport
in the fractures. Reaction front geometry in discrete
fracture systems can be described in surface reaction-
controlled systems with the parameterfD9/dv. This
parameter, which does not depend on mineral reaction
kinetics, is in fact a scaling factor which can be used
to predict the distribution of concentrations and
mineral zones in the fracture with a knowledge of
the diffusion-controlled mineral zoning in the rock
matrix. Practical use of this result might be to predict
mineralization along a fracture from field observa-
tions of wall rock alteration.
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